Advertisements
Advertisements
प्रश्न
If a + b = 10 and ab = 21, find the value of a3 + b3
उत्तर
In the given problem, we have to find the value of `a^3 + b^3`
Given `a+b = 10, ab = 21`
We shall use the identity `(a+b)^3 = a^3 +b^3 +3ab(a+b)`
Here putting, `a+b = 10,ab= 21`
`(10)^3 = a^3+ b^3 +3 (21)(10)`
` 1000 = a^3 +b^3 +630`
`1000 - 630 = a^3 +b^3`
`370 = a^3 + b^3`
Hence the value of `a^3 +b^3` is 370.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
(2x + y) (2x − y)
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify `(a + b + c)^2 + (a - b + c)^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
(a − b)3 + (b − c)3 + (c − a)3 =
Find the square of : 3a + 7b
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate: (9 − y) (7 + y)
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Simplify (2x – 5y)3 – (2x + 5y)3.