Advertisements
Advertisements
प्रश्न
(a − b)3 + (b − c)3 + (c − a)3 =
विकल्प
(a + b + c) (a2 + b2 + c2 − ab − bc − ca)
(a − b) (b − c) (c − a)
3(a − b) ( b− c) (c − a)
none of these
उत्तर
Given `(a-b)^3 + (b-c)^3 + (c-a)^2`
Using identity `x^2 +y^3 +z^3 = 3xyz`
Here `x = a -b, y = b -c,z = c-a`
`(a-b)^3 +(b-c)^3 (c-a)^3 = 3(a-b )(b-c)(c-a)`
Hence the Value of `(a-b)^3+ (b-c)^3+(c-a)^3` is `3(a-b)(b-c)(c-a)`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
(2x + y) (2x − y)
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Which one of the following is a polynomial?
Expand the following:
`(4 - 1/(3x))^3`
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4