Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3`
Given `x+1/x = 5`
We shall use the identity `(a+b)^3 = a^3 +b^3 + 3ab(a+b)`
Here putting, `x+1/x = 5`,`
`(x+ 1/x)^3 = x^3 +1/x^3 +3 (x xx 1/x)(x + 1/x)`
`5^3 = x^3 +1/x^3 (xxx 1/x)(x+1/x)`
`125 = x^3 +1/x^3 +3 (x+1/x)`
`125 = x^3 + 1/x^3 + 3 xx 5 `
`125 = x^3 + 1/x^3 +1 5 `
`125 -15 = x^3 + 1/x^3`
`110 = x^3 + 1/x^3`
Hence the value of `x^3 +1/x^3`is 110
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Write the expanded form:
`(-3x + y + z)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify (2x + p - c)2 - (2x - p + c)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
(x - 5) (x - 4)
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Expand the following:
(–x + 2y – 3z)2
Expand the following:
(3a – 2b)3