Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 + 1/x^3`
Given `x+1/x = 5`
We shall use the identity `(a+b)^3 = a^3 +b^3 + 3ab(a+b)`
Here putting, `x+1/x = 5`,`
`(x+ 1/x)^3 = x^3 +1/x^3 +3 (x xx 1/x)(x + 1/x)`
`5^3 = x^3 +1/x^3 (xxx 1/x)(x+1/x)`
`125 = x^3 +1/x^3 +3 (x+1/x)`
`125 = x^3 + 1/x^3 + 3 xx 5 `
`125 = x^3 + 1/x^3 +1 5 `
`125 -15 = x^3 + 1/x^3`
`110 = x^3 + 1/x^3`
Hence the value of `x^3 +1/x^3`is 110
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(2x + y) (2x − y)
Write in the expand form: `(2x - y + z)^2`
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use identities to evaluate : (101)2
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.