Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 7`
We shall use the identity `(a-b)^3 = a^3 - b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 7`,
`(x - 1/x)^3 = x^3 - 1/x^3 -3 (x xx 1/x)(x-1/x)`
`(7)^3 = x^3 - 1/x^3 - 3 (x xx 1/x ) (x-1/x)`
` 343 = x^3 - 1/x^3 -3 (x - 1/x)`
` 343 = x^3 - 1/x^3 -3 xx 7 `
` 343 = x^3 - 1/x^3 - 21`
` 343 + 21 = x^3 - 1/x^3`
` 343 = x^3 - 1/x^3`
Hence the value of `x^3 - 1/x^3` is 364 .
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate following using identities:
991 ☓ 1009
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Evaluate the following:
(98)3
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
Find the square of : 3a + 7b
Use identities to evaluate : (502)2
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If p + q = 8 and p - q = 4, find:
pq
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Which one of the following is a polynomial?
Expand the following:
`(4 - 1/(3x))^3`
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`