Advertisements
Advertisements
Question
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Solution
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 7`
We shall use the identity `(a-b)^3 = a^3 - b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 7`,
`(x - 1/x)^3 = x^3 - 1/x^3 -3 (x xx 1/x)(x-1/x)`
`(7)^3 = x^3 - 1/x^3 - 3 (x xx 1/x ) (x-1/x)`
` 343 = x^3 - 1/x^3 -3 (x - 1/x)`
` 343 = x^3 - 1/x^3 -3 xx 7 `
` 343 = x^3 - 1/x^3 - 21`
` 343 + 21 = x^3 - 1/x^3`
` 343 = x^3 - 1/x^3`
Hence the value of `x^3 - 1/x^3` is 364 .
APPEARS IN
RELATED QUESTIONS
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form: `(x + 2y + 4z)^2`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Use identities to evaluate : (502)2
If a + b = 7 and ab = 10; find a - b.
Evaluate: (5xy − 7) (7xy + 9)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
(–x + 2y – 3z)2
Find the following product:
(x2 – 1)(x4 + x2 + 1)