Advertisements
Advertisements
Question
Expand the following:
(–x + 2y – 3z)2
Solution
(–x + 2y – 3z)2
= (–x)2 + (2y)2 + (–3z)2 + 2(–x)(2y) + 2(y)(–3z) + 2(–3z)(–x) ...[Using identity, (a + b + c)2 – a2 + b2 + c2 + 2ab + 2bc + 2ca]
= x2 + 4y2 + 9z2 – 4xy – 12yz + 6x
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Factorise the following:
27 – 125a3 – 135a + 225a2
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate the following using identities:
(0.98)2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: (2a + 0.5) (7a − 0.3)
If x + y = 9, xy = 20
find: x2 - y2.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`