Advertisements
Advertisements
Question
Simplify (2x + p - c)2 - (2x - p + c)2
Solution
We have
`(2x + p - c)^2 - (2x - p + c)^2`
`= [(2x)^2 + (p)^2 + (-c)^2 + 2(2x)(p) + 2(p)(-c) + 2(2x)(-c)] - [(2x)^2 + (-p)^2 + c^2 + 2(2x)(-p) + 2(2x)(c) + 2(-p)c]`
` =[4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx] - [4x^2 + p^2 + c^2 - 4xp - 2pc + 4cx]`
`= 4x^2 + p^2 + c^2 + 4xp - 2pc - 4cx - 4x^2 - p^2 - c^2 + 4xp + 2pc - 4cx`
= 8xp - 8xc
= 8x(p - c)
`∴ (2x + p - c)^2 - (2x - p + c)^2 = 8x(p - c)`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following product without multiplying directly:
95 × 96
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If a − b = −8 and ab = −12, then a3 − b3 =
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of : 3a + 7b
Expand the following:
(x - 5) (x - 4)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If a - b = 10 and ab = 11; find a + b.
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.