Advertisements
Advertisements
Question
If a - b = 10 and ab = 11; find a + b.
Solution
a - b = 10, ab = 11
We know that :
(a - b)2 = a2 - 2ab + b2
⇒ (10)2 = a2 + b2 - 2 x 11
⇒ 100 = a2 + b2 - 22
⇒ a2 + b2
= 100 + 22
= 122
Using (a + b)2 = a2 + b2 + 2ab, we get
(a + b)2
= 122 +2(11)
= 122 + 22
= 144
⇒ (a + b)
= `sqrt(144)`
= ±12.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Evalute : `( 7/8x + 4/5y)^2`
Evalute : `((2x)/7 - (7y)/4)^2`