Advertisements
Advertisements
Question
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
Solution
In the given problem, we have to find value of `a^3 + b^3 + c^3 - 3abc`
Given `a+b+c = 9, ab + bc + ca = 26`
We shall use the identity
`(a+b+c)^2 = a^2 + b^2 + 2 (ab + bc + ca)`
`(a+b+c)^2 = a^2 + b^2 + c^2 + 2(26)`
`(9)^2 = a^2 + b^2 + c^2 + 52`
`81 - 52 = a^2 b^ + c^2`
`29 = a^2 +b^2 + c^2`
We know that
`a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 +c^2 - ab - bc - ca)`
`a^3 + b^3 + c^3 - 3abc = (a+b+c)[(a^2 + b^2 +c^2) -( ab + bc +ca)]`
Here substituting `a+b + c = 9,ab + bc + ca = 26,a^2 + b^2 + c^2 = 29 ` we get,
`a^3 + b^3 + c^3 - 3abc = 9 [(29 - 26)]`
` = 9 xx 3`
` = 27`
Hence the value of `a^3 + b^3 + c^3 - 3abc` is 27.
APPEARS IN
RELATED QUESTIONS
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1043 + 963
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use identities to evaluate : (998)2
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Evaluate the following without multiplying:
(999)2
If a - b = 10 and ab = 11; find a + b.
If x + y = 9, xy = 20
find: x - y
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Using suitable identity, evaluate the following:
101 × 102
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz