Advertisements
Advertisements
Question
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
Solution
In the given problem, we have to find value of a3 + b3 + c3 −3abc
Given a + b + c = 9 , a2+ b2 + c2 =35
We shall use the identity
`(a+b+c)^2 = a^2 +b^2 + c^2 + 2 (ab+bc+ ca)`
`(a+b+c)^2 =35 + 2 (ab+bc+ ca)`
`(9)^2 =35 + 2 (ab+bc+ ca)`
`81 - 35 = 2 (ab+bc+ ca)`
`46/ 2 = (ab+bc+ ca)`
`23 = (ab+bc+ ca)`
We know that
`a^3 + b^3 + c^3- 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - bc -ca)`
`a^3 + b^3 + c^3- 3abc = (a+b+c)[(a^2 + b^2 + c^2) - (ab + bc +ca)`
Here substituting `a+b+c = 9,a^2 +b^2 + c^2 = 35 , ab +bc + ca = 23` we get
`a^3 +b^3 + c^3 - 3abc = 9 [(35 - 23)]`
` =9 xx 12`
` = 108`
Hence the value of a3 + b3 + c3 −3abc is 108.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Expand the following, using suitable identity:
(x + 2y + 4z)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Write in the expand form: `(2x - y + z)^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
463+343
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
Find the square of 2a + b.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: (2 − z) (15 − z)
Evaluate: 203 × 197
Evaluate: 20.8 × 19.2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Simplify (2x – 5y)3 – (2x + 5y)3.