Advertisements
Advertisements
Question
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
Solution
We have to find the value of `x^2 + 1/x^2 `
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab + b^2`
Here `a= x,b= 1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x + (1/x)^2`
`(x+1/x)^2 = x xx x +2 xx x xx 1/x + 1/x xx 1/x`
` (x+1/x)^2 = x^2 + 2+ 1/x^3`
By substituting the value of `x + 1/x = 3` we get,
`(3)^2 = x^2 + 2+ 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 +1/x^2`
`7 = x^2 + 1/x^2`
Hence the value of `x^2 + 1/x^2`is 7 .
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If a − b = −8 and ab = −12, then a3 − b3 =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of : 3a - 4b
Evalute : `( 7/8x + 4/5y)^2`
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate :
(2a+3) (2a−3)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: (2 − z) (15 − z)
Evaluate: (5xy − 7) (7xy + 9)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate the following without multiplying:
(95)2
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).