Advertisements
Advertisements
प्रश्न
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
उत्तर
We have to find the value of `x^2 + 1/x^2 `
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab + b^2`
Here `a= x,b= 1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x + (1/x)^2`
`(x+1/x)^2 = x xx x +2 xx x xx 1/x + 1/x xx 1/x`
` (x+1/x)^2 = x^2 + 2+ 1/x^3`
By substituting the value of `x + 1/x = 3` we get,
`(3)^2 = x^2 + 2+ 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 +1/x^2`
`7 = x^2 + 1/x^2`
Hence the value of `x^2 + 1/x^2`is 7 .
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If a + b = 8 and ab = 6, find the value of a3 + b3
If x = −2 and y = 1, by using an identity find the value of the following
Evaluate:
483 − 303 − 183
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate: (4 − ab) (8 + ab)
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Using suitable identity, evaluate the following:
1033
Find the following product:
(x2 – 1)(x4 + x2 + 1)