Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
उत्तर
We have to find the value of `x^6 + 1/x^6`
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
Here `a= x, b=1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +(1/x)^2`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +1/x xx1/x`
`(x+1/x)^2 = x^2 +2+ 1/ x^2`
By substituting the value of `x+1/x = 3` We get,
`(3)^2 = x^2 + 2 + 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 + 1/x^2`
`7 = x^2 + 1/x^2`
Cubing on both sides we get,
`(7)^3 = (x^2 + 1/x^2)^3`
Using identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab\left( a + b \right)\]
Here `a=x^3 , b=1/x^2`
`343 = (x^2)^3 + (1/x^2)^3 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
`343 = x^6 + 1/x^6 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
Put `x^2 + 1/x^2 = 7`we get
`343 = x^6 +1/x^6 + 3 xx 7`
`343 = x^6 +1/x^6 +21`
By transposing 21 to left hand side we get ,
`343 - 21 = x^6 + 1/x^6`
`322 = x^6 + 1/x^6`
Hence the value of `x^6 + 1/x^6` is 322.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise:
27x3 + y3 + z3 – 9xyz
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Write in the expanded form:
`(a + 2b + c)^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b = 6 and ab = 20, find the value of a3 − b3
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the square of : 3a + 7b
If a + b = 7 and ab = 10; find a - b.
Expand the following:
(3x + 4) (2x - 1)
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate the following without multiplying:
(95)2
If a - b = 10 and ab = 11; find a + b.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`