Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
उत्तर
We have to find the value of `x^6 + 1/x^6`
Given `x+ 1/x = 3`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
Here `a= x, b=1/x`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +(1/x)^2`
`(x+1/x)^2 = x^2 + 2 xx x xx 1/x +1/x xx1/x`
`(x+1/x)^2 = x^2 +2+ 1/ x^2`
By substituting the value of `x+1/x = 3` We get,
`(3)^2 = x^2 + 2 + 1/x^2`
`3 xx 3 = x^2 + 2 +1/x^2`
By transposing + 2 to left hand side, we get
`9 -2 = x^2 + 1/x^2`
`7 = x^2 + 1/x^2`
Cubing on both sides we get,
`(7)^3 = (x^2 + 1/x^2)^3`
Using identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab\left( a + b \right)\]
Here `a=x^3 , b=1/x^2`
`343 = (x^2)^3 + (1/x^2)^3 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
`343 = x^6 + 1/x^6 + 3xx x^2 xx 1/x^2 (x^2 + 1/x^2)`
Put `x^2 + 1/x^2 = 7`we get
`343 = x^6 +1/x^6 + 3 xx 7`
`343 = x^6 +1/x^6 +21`
By transposing 21 to left hand side we get ,
`343 - 21 = x^6 + 1/x^6`
`322 = x^6 + 1/x^6`
Hence the value of `x^6 + 1/x^6` is 322.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
95 × 96
Factorise:
27x3 + y3 + z3 – 9xyz
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expand form: `(2x - y + z)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Evaluate of the following:
`(10.4)^3`
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Find the square of : 3a - 4b
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(x+1) (x−1)
Simplify by using formula :
(5x - 9) (5x + 9)
If x + y = 9, xy = 20
find: x2 - y2.
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Using suitable identity, evaluate the following:
101 × 102
Find the following product:
(x2 – 1)(x4 + x2 + 1)