Advertisements
Advertisements
प्रश्न
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
उत्तर
We have
(a + b + c)2 + (a - b + c)2 + (a + b - c)2
`= [a^2 + b^2 + c^2 + 2ab + 2bc + 2ca] + [a^2 + b^2 + c^2 - 2bc - 2ab + 2ca] + [a^2 + b^2 + c^2 - 2ca - 2bc + 2ab]`
`[∵ (x + y + z)^2 = x^2 + y^2 + 2xy + 2yz + 2zx]`
`= 3a^2 + 3b^2 + 3c^2 + 2ab + 2bc + 2ca - 2bc - 2ab + 2ca - 2ca - 2bc + 2ab`
`= 3a^2 + 3b^2 + 3c^2 + 2ab - 2bc + 2ca`
`= 3(a^2 + b^2 + c^2) + 2(ab - bc + ca)`
`∴(a + b + c)^2 + (a - b + c)^2 + (a + b - c)^2 = 3(a^2 + b^2 + c^2) + 2[ab - bc + ca]`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expand form: `(2x - y + z)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
`(10.4)^3`
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(a + 3b)2
Evaluate the following without multiplying:
(95)2
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.