Advertisements
Advertisements
प्रश्न
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
उत्तर
We have
(a + b + c)2 + (a - b + c)2 + (a + b - c)2
`= [a^2 + b^2 + c^2 + 2ab + 2bc + 2ca] + [a^2 + b^2 + c^2 - 2bc - 2ab + 2ca] + [a^2 + b^2 + c^2 - 2ca - 2bc + 2ab]`
`[∵ (x + y + z)^2 = x^2 + y^2 + 2xy + 2yz + 2zx]`
`= 3a^2 + 3b^2 + 3c^2 + 2ab + 2bc + 2ca - 2bc - 2ab + 2ca - 2ca - 2bc + 2ab`
`= 3a^2 + 3b^2 + 3c^2 + 2ab - 2bc + 2ca`
`= 3(a^2 + b^2 + c^2) + 2(ab - bc + ca)`
`∴(a + b + c)^2 + (a - b + c)^2 + (a + b - c)^2 = 3(a^2 + b^2 + c^2) + 2[ab - bc + ca]`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If a + b = 7 and ab = 12, find the value of a2 + b2
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of : 3a + 7b
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Find the following product:
(x2 – 1)(x4 + x2 + 1)
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4