Advertisements
Advertisements
प्रश्न
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
उत्तर
Given,
(x2 + x − 2)(x2 − x + 2)
= [x2 + (x − 2)][x2 − (x − 2)]
using identity (a − b)(a + b) = a2 − b2
= (x2)2 − (x − 2)2
using identity, (a − b)2 = a2 − 2ab + b2
= x4 − (x2 − 4x + 4)
= x4 − x2 + 4x − 4
Hence, (x2 + x − 2)(x2 − x + 2) = x4 − x2 + 4x − 4.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(0.98)2
Write in the expanded form: (ab + bc + ca)2
Simplify (2x + p - c)2 - (2x - p + c)2
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If a − b = −8 and ab = −12, then a3 − b3 =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If a2 + b2 + c2 − ab − bc − ca =0, then
Find the square of 2a + b.
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Expand the following:
(x - 3y - 2z)2
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If a - b = 10 and ab = 11; find a + b.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz