Advertisements
Advertisements
प्रश्न
Write in the expanded form: (ab + bc + ca)2
उत्तर
We have
(ab + bc + ca)2 = (ab)2 + (bc)2 + (ca )2 + 2 (ab)(bc) + 2(bc)ca + 2 (ab)(ca )
[∵ (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca]
= a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc
∴ (ab + bc + ca)2 = a2b2 + b2c2 + c2a2 + 2ab2c + 2bc2a + 2a2bc
APPEARS IN
संबंधित प्रश्न
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
Evaluate: (2a + 0.5) (7a − 0.3)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Expand the following:
(3x + 4) (2x - 1)
Expand the following:
(a + 3b)2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
The value of 2492 – 2482 is ______.
Using suitable identity, evaluate the following:
9992
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).