Advertisements
Advertisements
प्रश्न
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
उत्तर
`27p^3 - 1/216 - 9/2p^2 + 1/4p`
= `(3p)^3 - (1/6)^3 - 3(3p)(1/6)(3p - 1/6)`
= `(3p-1/6)^3` ...[Using a3 − b3 − 3ab(a − b) = (a − b)3]
= `(3p-1/6)(3p-1/6)(3p-1/6)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(99)3
Factorise the following:
27y3 + 125z3
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form: (ab + bc + ca)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
`(10.4)^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Use identities to evaluate : (101)2
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Evaluate the following without multiplying:
(1005)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz