Advertisements
Advertisements
प्रश्न
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
उत्तर
We have,
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
`= [x^2 + y^2 + z^2 + 2xy + 2yz + 2zx] + [x^2 + y^2/4 + z^2/9 + 2x . y/2 + 2 (zx)/3 + (yz)/3] - [x^2/4 + y^2/9 + z^2/10 + (xy)/3 + (xz)/4 + (yz)/6]`
`= x^2 + y^2 + z^2 + x^2 + y^2/4 + z^2/9 - x^2/4 - y^2/9 - z^2/16 + 2xy + 2x . y/2 - (xy)/3 + 2yz + (yz)/3 - (yz)/6 + 2zx + (2zx)/3 - (xz)/4`
`= (8x^2 - x^2)/4 + (36y^2 + 9y^2 - 4y^2)/36 + (144z^2 + 16z^2 - 9z^2)/144 + (6xy + 3xy - xy)/3 + (13yz)/6 + (29xz)/12`
`= (7x^2)/4 + (41y^2)/36 + (151z^2)/144 + (8xy)/3 + (13yz)/6 + (29zx)/12`
`∴ (x + y + z)^2 + (x + y/2 + z/3)^2 - (x/2 + y/3 + z/4)^2`
`= (7x^2)/4 + (41y^2)/36 + (151Z^2)/144 + (8xy)/3 + (13yz)/6 + (29zx)/12`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
Use identities to evaluate : (101)2
Use the direct method to evaluate :
(x+1) (x−1)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Evaluate: 20.8 × 19.2
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(2x + y)(4x2 - 2xy + y2)
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Expand the following:
`(1/x + y/3)^3`