Advertisements
Advertisements
प्रश्न
Expand the following:
`(1/x + y/3)^3`
उत्तर
`(1/x + y/3)^3 = (1/x)^3 + (y/3)^3 + 3(1/x)(y/3)(1/x + y/3)` ...[Using identity, (a + b)3 = a3 + b3 + 3ab(a + b)]
= `1/x^3 + y^3/27 + y/x(1/x + y/3)`
= `1/x^3 + y^3/27 + y/x^2 + y^2/(3x)`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
The product (x2−1) (x4 + x2 + 1) is equal to
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).