Advertisements
Advertisements
प्रश्न
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
पर्याय
- 1
-1
- \[\frac{1}{2}\]
0
उत्तर
Given `a/b + b/a = 1`
`(a xx a)/(b xx a) +(b xx b) /(a xx b) = 1`
`a^2/(ab) +b^2/(ab) = 1`
`(a^2 +b^2 ) /(ab )= 1`
`a^2 +b^2 = 1 xx ab`
`a^2 +b^2= ab`
`a^2 +b^2 - ab = 0`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`we get,
`a^3 +b^3 = (a+b)(a^2 - ab + b^2)`
`a^3 +b^3 = (a+b)(0)`
`a^3 +b^3 = 0`
Hence the value of `a^3 + b^3 ` is 0 .
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use identities to evaluate : (502)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(x + y - z)2 + (x - y + z)2
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).