Advertisements
Advertisements
प्रश्न
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
पर्याय
0
\[\frac{1}{4}\]
- \[\frac{1}{\sqrt{2}}\]
- \[\frac{1}{2}\]
उत्तर
We have to find the value of b
Given `49a^2 - b = [7a + 1/2] [7a-1/2]`
Using identity `x^2 - y^2 = (x+y)(x-y)`
We get
`49a^2 - b = [7a+1/2] [7a - 1/2]`
`49a^2 - b = [(7a)^2 - (1/2)^2]`
`49a^2 - b = [49a^2 - 1/4]`
Equating ‘b’ on both sides we get
` -b = -1/4`
` -b = -1/4`
Hence the value of b is `1/4`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Evaluate the following product without multiplying directly:
95 × 96
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b = 8 and ab = 6, find the value of a3 + b3
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
Find the square of : 3a + 7b
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (6 − 5xy) (6 + 5xy)
Find the squares of the following:
3p - 4q2
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).