Advertisements
Advertisements
Question
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Options
0
\[\frac{1}{4}\]
- \[\frac{1}{\sqrt{2}}\]
- \[\frac{1}{2}\]
Solution
We have to find the value of b
Given `49a^2 - b = [7a + 1/2] [7a-1/2]`
Using identity `x^2 - y^2 = (x+y)(x-y)`
We get
`49a^2 - b = [7a+1/2] [7a - 1/2]`
`49a^2 - b = [(7a)^2 - (1/2)^2]`
`49a^2 - b = [49a^2 - 1/4]`
Equating ‘b’ on both sides we get
` -b = -1/4`
` -b = -1/4`
Hence the value of b is `1/4`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
104 × 96
Factorise the following:
27y3 + 125z3
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(xy+4) (xy−4)
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Expand the following:
`(4 - 1/(3x))^3`