Advertisements
Advertisements
Question
Expand the following:
`(4 - 1/(3x))^3`
Solution
`(4 - 1/(3x))^3 = (4)^3 + (-1/(3x))^3 + 3(4)(-1/(3x))(4 - 1/(3x))` ...[Using identity, (a – b)3 = a3 – b3 + 3a(– b)(a – b)]
= `64 - 1/(27 x^3) - 4/x(4 - 1/(3x))`
= `64 - 1/(27x^3) - 16/x + 4/(3x^2)`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
117 x 83
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Find the square of : 3a - 4b
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(xy+4) (xy−4)
If x + y = 9, xy = 20
find: x - y
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4