English

If X + 1 X 4, Then X 4 + 1 X 4 = - Mathematics

Advertisements
Advertisements

Question

If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]

Options

  • 196

  • 194

  • 192

  • 190

MCQ

Solution

In the given problem, we have to find the value of  `x^4 + 1/x^4`

Given  `x+ 1/x = 4`

We shall use the identity `(a+b)^2 = a^2 +b^2 + 2ab`

Here put,`x+ 1/x = 4`

`(x+ 1/x)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`

             `(4)^2 = x^2 + 1/x^2 + 2 (x xx 1/x )`

                 `16 = x^2 + 1/x^2 + 2` 

           ` 16 -2 = x^2 + 1/x^2`

                 `14 = x^2 + 1/x^2`

Squaring on both sides we get, 

`(14)^2 = (x^2 + 1/x^2 )^2`

`14 xx 14 = (x^2)^2 + (1/x^2) ^2 + 2 xx x^2 xx 1/x^2`

       `196 = x^4 + 1/x^4 + 2`

`196 -2 = x^4 + 1/x^4`

       `194= x^4 + 1/x^4`

Hence the value of  `x^4 + 1/x^4`is 194.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.7 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.7 | Q 3 | Page 30

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×