Advertisements
Advertisements
Question
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
Options
196
194
192
190
Solution
In the given problem, we have to find the value of `x^4 + 1/x^4`
Given `x+ 1/x = 4`
We shall use the identity `(a+b)^2 = a^2 +b^2 + 2ab`
Here put,`x+ 1/x = 4`
`(x+ 1/x)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`
`(4)^2 = x^2 + 1/x^2 + 2 (x xx 1/x )`
`16 = x^2 + 1/x^2 + 2`
` 16 -2 = x^2 + 1/x^2`
`14 = x^2 + 1/x^2`
Squaring on both sides we get,
`(14)^2 = (x^2 + 1/x^2 )^2`
`14 xx 14 = (x^2)^2 + (1/x^2) ^2 + 2 xx x^2 xx 1/x^2`
`196 = x^4 + 1/x^4 + 2`
`196 -2 = x^4 + 1/x^4`
`194= x^4 + 1/x^4`
Hence the value of `x^4 + 1/x^4`is 194.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 4) (x + 10)
Evaluate the following using suitable identity:
(998)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
(103)3
Evaluate of the following:
1113 − 893
Evaluate of the following:
933 − 1073
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If x = −2 and y = 1, by using an identity find the value of the following
If a2 + b2 + c2 − ab − bc − ca =0, then
The product (x2−1) (x4 + x2 + 1) is equal to
Evaluate: (9 − y) (7 + y)
Expand the following:
`(2"a" + 1/(2"a"))^2`
Simplify by using formula :
(a + b - c) (a - b + c)
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If x + y = 1 and xy = -12; find:
x2 - y2.
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Expand the following:
(4a – b + 2c)2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.