Advertisements
Chapters
2: Exponents of Real Numbers
3: Rationalisation
▶ 4: Algebraic Identities
5: Factorisation of Algebraic Expressions
6: Factorisation of Polynomials
7: Linear Equations in Two Variables
8: Co-ordinate Geometry
9: Introduction to Euclid’s Geometry
10: Lines and Angles
11: Triangle and its Angles
12: Congruent Triangles
13: Quadrilaterals
14: Areas of Parallelograms and Triangles
15: Circles
16: Constructions
17: Heron’s Formula
18: Surface Areas and Volume of a Cuboid and Cube
19: Surface Areas and Volume of a Circular Cylinder
20: Surface Areas and Volume of A Right Circular Cone
21: Surface Areas and Volume of a Sphere
22: Tabular Representation of Statistical Data
23: Graphical Representation of Statistical Data
24: Measures of Central Tendency
25: Probability
![RD Sharma solutions for Mathematics [English] Class 9 chapter 4 - Algebraic Identities RD Sharma solutions for Mathematics [English] Class 9 chapter 4 - Algebraic Identities - Shaalaa.com](/images/8193647912-mathematics-english-class-9_6:1a030933ece146238cec338f12706a07.jpg)
Advertisements
Solutions for Chapter 4: Algebraic Identities
Below listed, you can find solutions for Chapter 4 of CBSE RD Sharma for Mathematics [English] Class 9.
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.1 [Pages 6 - 7]
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Evaluate the following using identities:
(399)2
Evaluate the following using identities:
(0.98)2
Evaluate following using identities:
991 ☓ 1009
Evaluate the following using identities:
117 x 83
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.2 [Pages 11 - 12]
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form:
(2a - 3b - c)2
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form:
`(m + 2n - 5p)^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expanded form (a2 + b2 + c2 )2
Write in the expanded form: (ab + bc + ca)2
Write in the expanded form: `(x/y + y/z + z/x)^2`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Write in the expanded form: `(x + 2y + 4z)^2`
Write in the expand form: `(2x - y + z)^2`
Write in the expanded form: (-2x + 3y + 2z)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify (2x + p - c)2 - (2x - p + c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.3 [Pages 19 - 20]
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If a + b = 10 and ab = 21, find the value of a3 + b3
If a − b = 4 and ab = 21, find the value of a3 −b3
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
(103)3
Evaluate the following:
(98)3
Evaluate of the following:
(9.9)3
Evaluate of the following:
`(10.4)^3`
Evaluate of the following:
(598)3
Evaluate of the following:
(99)3
Evaluate of the following:
1113 − 893
Evaluate of the following:
463+343
Evaluate of the following:
1043 + 963
Evaluate of the following:
933 − 1073
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.4 [Pages 24 - 25]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
Find the following product:
Find the following product:
Find the following product:
Find the following product:
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a + b = 8 and ab = 6, find the value of a3 + b3
If a + b = 6 and ab = 20, find the value of a3 − b3
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
If x = −2 and y = 1, by using an identity find the value of the following
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.5 [Pages 28 - 29]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
Evaluate:
253 − 753 + 503
Evaluate:
483 − 303 − 183
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.6 [Page 29]
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If a + b = 7 and ab = 12, find the value of a2 + b2
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
RD Sharma solutions for Mathematics [English] Class 9 4 Algebraic Identities Exercise 4.7 [Pages 30 - 32]
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
25
10
23
27
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
64
14
8
2
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
196
194
192
190
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
927
414
364
322
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
8
10
12
13
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
5
10
15
none of these
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
5
4
3
2
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
35
58
127
none of these
(a − b)3 + (b − c)3 + (c − a)3 =
(a + b + c) (a2 + b2 + c2 − ab − bc − ca)
(a − b) (b − c) (c − a)
3(a − b) ( b− c) (c − a)
none of these
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
1
-1
- \[\frac{1}{2}\]
0
If a − b = −8 and ab = −12, then a3 − b3 =
−244
−240
−224
−260
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
3, x2, − 27x
3, x − 3, x + 3
3, x2, 27x
3, 3, 3
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
10000
6250
7500
3750
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
x16 − y16
x8 − y8
x8 + y8
x16 + y16
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
27
25
- \[3\sqrt{3}\]
- \[- 3\sqrt{3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
76
52
64
none of these
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
4
- \[\frac{17}{4}\]
- \[\frac{13}{4}\]
- \[\frac{1}{4}\]
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
25
35
49
30
If a2 + b2 + c2 − ab − bc − ca =0, then
a + b + c
b + c = a
c + a = b
a = b = c
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
0
1
-1
3
If a1/3 + b1/3 + c1/3 = 0, then
a + b + c = 0
(a + b + c)3 =27abc
a + b + c = 3abc
a3 + b3 + c3 = 0
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
108
207
669
729
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
3(a + b) ( b+ c) (c + a)
3(a − b) (b − c) (c − a)
(a − b) (b − c) (c − a)
none of these
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
a6 + b6
a6 − b6
a3 − b3
a3 + b3
The product (x2−1) (x4 + x2 + 1) is equal to
x8 − 1
x8 + 1
x6 − 1
x6 + 1
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
- 1
-1
- \[\frac{1}{2}\]
0
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
0
\[\frac{1}{4}\]
- \[\frac{1}{\sqrt{2}}\]
- \[\frac{1}{2}\]
Solutions for 4: Algebraic Identities
![RD Sharma solutions for Mathematics [English] Class 9 chapter 4 - Algebraic Identities RD Sharma solutions for Mathematics [English] Class 9 chapter 4 - Algebraic Identities - Shaalaa.com](/images/8193647912-mathematics-english-class-9_6:1a030933ece146238cec338f12706a07.jpg)
RD Sharma solutions for Mathematics [English] Class 9 chapter 4 - Algebraic Identities
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 9 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 9 CBSE 4 (Algebraic Identities) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 9 chapter 4 Algebraic Identities are Algebraic Identities.
Using RD Sharma Mathematics [English] Class 9 solutions Algebraic Identities exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 9 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 4, Algebraic Identities Mathematics [English] Class 9 additional questions for Mathematics Mathematics [English] Class 9 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.