Advertisements
Advertisements
Question
Evaluate of the following:
1043 + 963
Solution
In the given problem, we have to find the value of numbers
Given 1043 + 963
We can write 1043 + 963 as `(100 + 4)^3 + (100 - 4)^3`
We shall use the identity `(a+b)^3 + (a-b)^3 = 2 [a^3 + 3ab^2]`
Here a= 100 , b = 4
\[{104}^3 + {96}^3 = \left( 100 + 4 \right)^3 + \left( 100 - 4 \right)^3\]
`= 2 [100^3 + 3 (100)(4)^2]`
` = 2 [1000000 + 300 xx 16]`
` = 2 [1000000 +4800]`
` = 2 [1004800]`
` = 2009600`
Hence the value of `104^3 + 96^3`is 2009600.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Evaluate the following using suitable identity:
(998)3
Evaluate the following using identities:
(2x + y) (2x − y)
Evaluate the following using identities:
(399)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Evaluate of the following:
933 − 1073
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
Find the square of : 3a + 7b
Use identities to evaluate : (101)2
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Expand the following:
(a + 4) (a + 7)
Find the squares of the following:
(2a + 3b - 4c)
If a - b = 10 and ab = 11; find a + b.
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.