Advertisements
Advertisements
Question
Factorise the following using appropriate identity:
4y2 – 4y + 1
Solution
4y2 – 4y + 1
= (2y)2 – 2(2y)(1) + (1)2
= (2y – 1)2 ...[x2 – 2xy + y2 = (x – y)2]
= (2y – 1)(2y – 1)
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
(399)2
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Write in the expanded form: `(x + 2y + 4z)^2`
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If a + b + c = 0, then write the value of \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use identities to evaluate : (97)2
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Find the squares of the following:
(2a + 3b - 4c)
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`