Advertisements
Advertisements
Question
Factorise:
27x3 + y3 + z3 – 9xyz
Solution
It is known that,
x3 + y3 + z3 − 3xyz = (x + y + z) (x2 + y2 + z2 − xy − yz − zx)
∴ 27x3 + y3 + z3 – 9xyz = (3x)3 + (y)3 + (z)3 – 3(3x)(y)(z)
= (3x + y + z)(3x)2 + y2 + z2 – 3xy – yz – 3xz
= (3x + y + z)(9x2 + y2 + z2 – 3xy – yz – 3xz)
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Expand the following, using suitable identity:
(x + 2y + 4z)2
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Write the following cube in expanded form:
(2x + 1)3
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If a + b = 8 and ab = 6, find the value of a3 + b3
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(3b−1) (3b+1)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
(3a - 7b + 3)(3a - 7b + 5)