Advertisements
Advertisements
Question
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Solution
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]as
`= (3/x - x/3) ((3/x)^2 + (x/3)^2 + (3/x)(x/3))`
` = (3/x)^3 - (x/3)^3`
\[= \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) \times \left( \frac{3}{x} \right) - \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right) \times \left( \frac{x}{3} \right)\]
\[ = \frac{27}{x^3} - \frac{x^3}{27}\]
Now substituting the value x=3, in `27/x^3 - x^3/27`we get,
`27/3^3 - 3^3/27`
`27/27 - 27/27`
` = 0`
Hence the Product value of \[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\] is `0`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate the following:
(98)3
Evaluate of the following:
1113 − 893
Find the following product:
Use identities to evaluate : (502)2
Evalute : `((2x)/7 - (7y)/4)^2`
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: (4 − ab) (8 + ab)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Expand the following:
(3a – 2b)3