Advertisements
Advertisements
Question
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
Solution
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
We shall use the identity,`a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\] as
` = (x/7 + y/3)[(x/7)^2 + (y/3)^2 - (x/7)(y/3)]`
` = (x/7)^3 + (y/3)^3`
` = (x/7) xx (x/7) xx (x/7) + (y/3)xx (y/3)xx (y/3)`
` = x^3/343 + y^3/27`
Now substituting the value i`x =3,y = -1`n `x^3/343 + y^3/27`
` = x^3/343 + y^3/27`
`= 3^3/343 + (-1)^3/27`
` = 27/343 - 1/27`
Taking Least common multiple, we get
` = (27 xx 27)/(343 xx 27) - (1 xx 343) / (27 xx 343)`
` = 729/9261 - 343/9261`
`= (729 - 343)/9261`
` = 386/9261`
Hence the Product value of \[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]is ` = 386/9261`.
APPEARS IN
RELATED QUESTIONS
Evaluate following using identities:
991 ☓ 1009
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Write in the expanded form:
`(a + 2b + c)^2`
Write in the expanded form: (-2x + 3y + 2z)2
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate: (5xy − 7) (7xy + 9)
Expand the following:
`(2"a" + 1/(2"a"))^2`
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
`(1/x + y/3)^3`