Advertisements
Advertisements
Question
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Solution
Given (4x − 5y) (16x2 + 20xy + 25y2)
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 -b^3`
We can rearrange the (4x − 5y) (16x2 + 20xy + 25y2)as
` =(4x - 5y)[(4x)^2 + (4x)(5y) + (5y)^2]`
` = (4x)^3 - (5y)^3`
` = (4x) xx (4x) xx (4x) + (5y) xx (5y) xx (5y)`
` = 64x^3 - 125y^2`
Hence the Product value of ` (3x+2y)(9x^2 - 6xy + 4y^2)`is `64x^3 - 125y^3`.
APPEARS IN
RELATED QUESTIONS
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate the following without multiplying:
(999)2
If p + q = 8 and p - q = 4, find:
p2 + q2
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)