Advertisements
Advertisements
Question
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
Solution
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)
= 3a(9a2 + 4b2 + c2 - 6ab + 2bc + 3a) + 2b (9a2 + 4b2 + c2 - 6ab + 2bc + 3ca) - c(9a2 + 4b2 + c2 - 6ab + 2bc + 3ca)
= 27a3 + 12ab2 + 3ac2 - 18a2b + 6abc + 9a2c + 18a2b + 8b3 + 2bc2 - 12ab2 + 4b2c + 6abc - 9a2c - 4b2c - c3 + 6abc - 2bc2 - 3ac2
= 27a3 + 8b3 - c3 + 18abc.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 4) (x + 10)
Write the following cube in expanded form:
`[3/2x+1]^3`
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If a − b = −8 and ab = −12, then a3 − b3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Using suitable identity, evaluate the following:
9992