Advertisements
Advertisements
Question
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Solution
`(2x + 3y)^2 = (2x)^2 + (3y)^2 + 2(2x)(3y)`
`=> (2x + 3y)^2 = 4x^2 - 9y^2 + 12xy`
`=> (8)^2 = (4x^2 + 9y^2 + 24)` [∵ 2x + 3y = 8, xy = 24]
`=> 64 - 24 = 4x^2 + 9y^2`
`=> 4x^2 + 9y^2 = 40`
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
95 × 96
Evaluate the following using identities:
(399)2
Write in the expand form: `(2x - y + z)^2`
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Evaluate: 20.8 × 19.2
Expand the following:
(3x + 4) (2x - 1)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If m - n = 0.9 and mn = 0.36, find:
m + n
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Expand the following:
`(1/x + y/3)^3`