Advertisements
Advertisements
Question
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Solution
In the given problem, we have to find Product of equations
Given `(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc +8ca)`
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+y+ z) (x^2 + y^2 + z^2 - xy - yz - zx)`
` = (2a)^3 + (3b)^3 + (2c)^3 - 3 (2a )(3b)(2c)`
` = (2a) xx(2a) xx(2a) +(-3b) xx (-3b) xx(-3b)+ ( -2c) xx ( -2c) xx ( -2c) -3 (2a)(-3b)(-2c)`
` = 8a^3 - 27b^3 - 8c^3 - 36abc`
Hence the product of `(2a - 3b - 2c)(4a^2 + 9b^2 + 4c^2 + 6ab - 6bc +8ca)` is `8a^3 - 27b^3 - 8c^3 - 36abc`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Factorise the following using appropriate identity:
4y2 – 4y + 1
Write the following cube in expanded form:
`[3/2x+1]^3`
Write the following cube in expanded form:
`[x-2/3y]^3`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Evaluate of the following:
1113 − 893
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
If p + q = 8 and p - q = 4, find:
pq
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
Find the following product:
(x2 – 1)(x4 + x2 + 1)