Advertisements
Advertisements
Question
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Solution
We have
`[2x^2 - 4x^2 + 1][2x^4 - 4x^2 - 1]`
`=> [(2x^4 - 4x^2)^2 - (1)^2] [∵ (a + b)(a - b) = a^2 - b^2]`
`=> [(2x^4)^2 + (4x^2)^2 - 2(2x^4)(4x^2) - 1]`
`=> 4x^8 + 16^4 - 16x^6 - 1 [∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`=> 4x^8 - 16x^6 + 16x^4 - 1`
`∴ [2x^4 - 4x^2 + 1][2x^4 - 4x^2 - 1] = 4x^8 - 16x^6 + 16x^4 - 1`
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Write the following cube in expanded form:
`[x-2/3y]^3`
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Evaluate the following using identities:
`(a^2b - b^2a)^2`
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Simplify by using formula :
(x + y - 3) (x + y + 3)
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
The coefficient of x in the expansion of (x + 3)3 is ______.
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Expand the following:
(3a – 5b – c)2