Advertisements
Advertisements
Question
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Solution
In the given problem, we have to find `x^2 + 1/x^2`
Given `(x-1/x)=-1`
On squaring both sides we get,
`(x-1/x)^2=(-1)^2`
We shall use the identity `(x-y )^2 = x^2 - 2xy + y`
`x^2 +1/x^2 - 2 xx x xx 1/x =- 1 xx -1`
`x^2 +1/x^2 -2 =1`
`x^2 +1/x^2 = 1+2`
`x^2+1/x^2 =3`
Hence the value of ` x^2 +1/x^2`is 3 .
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Expand the following, using suitable identity:
(3a – 7b – c)2
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Factorise:
27x3 + y3 + z3 – 9xyz
Evaluate the following using identities:
(399)2
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Write in the expanded form:
`(m + 2n - 5p)^2`
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If a1/3 + b1/3 + c1/3 = 0, then
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)