Advertisements
Advertisements
Question
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
Solution
We have
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
`= ((7.83 + 1.17)(7.83 - 1.17))/6.66` `[∵ (a^2 - b^2) = (a + b)(a - b)]`
`= ((9.00)(6.66))/(6.66)`
= 9
`∴ (7.83 xx 7.83 - 1.17 xx 1.17)/6.66 = 9`
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
117 x 83
Simplify `(a + b + c)^2 + (a - b + c)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate of the following:
`(10.4)^3`
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Simplify by using formula :
(a + b - c) (a - b + c)
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
The value of 2492 – 2482 is ______.
Using suitable identity, evaluate the following:
9992
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6