Advertisements
Advertisements
Question
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Solution
(i) Consider the given equation
a2 - 3a + 1 = 0
Rewrite the given equation, we have
a2 + 1 = 3a
⇒ `[ a^2 + 1 ]/a = 3`
⇒ `[ a^2/a + 1/a ] = 3`
⇒ `[ a + 1/a ] = 3` ...(1)
(ii) We need to find `a^2 + 1/a^2`:
We know the identity, (a + b)2 = a2 + b2 + 2ab
∴ `(a + 1/a )^2 = a^2 + 1/a^2 + 2` ...(2)
From equation (1), we have,
`a + 1/a` = 3
Thus, equation (2), becomes,
⇒ `(3)^2 = a^2 + 1/a^2 + 2`
⇒ 9 = `a^2 + 1/a^2 + 2`
⇒ `a^2 + 1/a^2 = 7`
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
104 × 96
Write in the expanded form:
`(2 + x - 2y)^2`
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b = 7 and ab = 12, find the value of a2 + b2
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
Use the direct method to evaluate the following products :
(a – 8) (a + 2)
Evaluate the following without multiplying:
(95)2
Evaluate the following without multiplying:
(103)2
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.