Advertisements
Advertisements
Question
If a + b = 7 and ab = 12, find the value of a2 + b2
Solution
We have to find the value of `a^2 +b^2`
Given `a + b = 7 ,ab = 12`
Using identity `(a+b)^2 = a^2 + 2ab +b^2`
By substituting the value of a + b = 7 ,ab = 12we get
`(a+b)^2 = a^2 +b^2 + 2 xx ab`
`(7)^2 = a^2 +b^2 + 2 xx 12`
`49 = a^2 +b^2 + 24`
By transposing +24 to left hand side we get ,
`49 - 24 = a^2 +b^2`
`25 = a^2 +b^2`
Hence the value of `a^2 +b^2 ` is 25.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
Write the expanded form:
`(-3x + y + z)^2`
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Expand the following:
(a + 4) (a + 7)
Evaluate the following without multiplying:
(95)2
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Using suitable identity, evaluate the following:
101 × 102
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6