English

If `X + 1/X = Sqrt5`, Find the Value of `X^2 + 1/X^2` and `X^4 + 1/X^4` - Mathematics

Advertisements
Advertisements

Question

If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`

Solution

We have

`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`

`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`

`=> (sqrt5)^2 = x^2 + 1/x^2 + 2`   [∵ `x + 1/x = sqrt5`]

`=> 5 = x^2 + 1/x^2 + 2`

`=> x^2 + 1/x^2 = 3`  ......(1)

Now `(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2` 

`=> (x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2`

`=> 9 = x^2 + 1/x^4 + 2` [∵ `x^2 + 1/x^2 = 3`]

`=> x^4 + 1/x^4 = 7`

Hence `x^2 + 1/x^2 = 3; x^4 + 1/x^4 = 7`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.1 [Page 7]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.1 | Q 6 | Page 7

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×