Advertisements
Advertisements
Question
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Solution
We have
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`
`=> (sqrt5)^2 = x^2 + 1/x^2 + 2` [∵ `x + 1/x = sqrt5`]
`=> 5 = x^2 + 1/x^2 + 2`
`=> x^2 + 1/x^2 = 3` ......(1)
Now `(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`=> (x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2`
`=> 9 = x^2 + 1/x^4 + 2` [∵ `x^2 + 1/x^2 = 3`]
`=> x^4 + 1/x^4 = 7`
Hence `x^2 + 1/x^2 = 3; x^4 + 1/x^4 = 7`
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If a − b = 4 and ab = 21, find the value of a3 −b3
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If a − b = −8 and ab = −12, then a3 − b3 =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: (9 − y) (7 + y)
Evaluate: 203 × 197
Find the squares of the following:
9m - 2n
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a" + 1/"a" = 6;`find `"a"^2 - 1/"a"^2`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.