Advertisements
Advertisements
प्रश्न
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
उत्तर
We have
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`=> (x + 1/x)^2 = x^2 + 1/x^2 + 2`
`=> (sqrt5)^2 = x^2 + 1/x^2 + 2` [∵ `x + 1/x = sqrt5`]
`=> 5 = x^2 + 1/x^2 + 2`
`=> x^2 + 1/x^2 = 3` ......(1)
Now `(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`=> (x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2`
`=> 9 = x^2 + 1/x^4 + 2` [∵ `x^2 + 1/x^2 = 3`]
`=> x^4 + 1/x^4 = 7`
Hence `x^2 + 1/x^2 = 3; x^4 + 1/x^4 = 7`
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
117 x 83
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Write in the expand form: `(2x - y + z)^2`
Write in the expanded form: (-2x + 3y + 2z)2
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Evaluate of the following:
1113 − 893
If x = −2 and y = 1, by using an identity find the value of the following
If a + b = 7 and ab = 12, find the value of a2 + b2
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
Evaluate: 203 × 197
Find the squares of the following:
3p - 4q2
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.