Advertisements
Advertisements
प्रश्न
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
उत्तर
Since, x + y + z = 0
= x + y = −z(x + y)3 = (−z)3
= x3 + y3 + 3xy(x + y) = (−z)3
= x3 + y3 + 3xy(−z) = −z3 ...[∵ x + y = −z]
= x3 + y3 − 3xyz = (−z)3
= x3 + y3 + z3 = 3xyz
Hence, if x + y + z = 0, then
x3 + y3 + z3 = 3xyz
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate the following using identities:
(399)2
if `x^2 + 1/x^2 = 79` Find the value of `x + 1/x`
Write in the expanded form (a2 + b2 + c2 )2
Evaluate of the following:
(9.9)3
Evaluate of the following:
(598)3
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
Find the square of : 3a - 4b
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If 2x + 3y = 10 and xy = 5; find the value of 4x2 + 9y2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Simplify:
(7a +5b)2 - (7a - 5b)2
Using suitable identity, evaluate the following:
101 × 102
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4
Simplify (2x – 5y)3 – (2x + 5y)3.