Advertisements
Advertisements
प्रश्न
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
उत्तर
Given, (3x + 4) (3x – 5)
Hence, using a suitable identity,
(3x + 4) (3x – 5)
= (3x + 4) [3x + (–5)]
Using the identity (x + a) (x + b) = x2 + (a + b)x + ab, we get that,
(3x)2 + [4 + (–5)]3x + [4 × (–5)]
= 9x2 + (4 – 5)3x + (–20)
= 9x2 + (–1)3x – 20
= 9x2 – 3x – 20
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expanded form: (-2x + 3y + 2z)2
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(3b−1) (3b+1)
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Expand the following:
`(1/x + y/3)^3`