Advertisements
Advertisements
प्रश्न
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
बेरीज
उत्तर
squaring both sides of the equation `(x^2 + (1)/x^2)` = 7 , we get:
`x^4 + (1)/x^4 + 2`
= 49
`x^4 + (1)/x^4`
= 47.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify (2x + p - c)2 - (2x - p + c)2
Find the following product:
\[\left( \frac{2}{x} + 3x \right) \left( \frac{4}{x^2} + 9 x^2 - 6 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Simplify:
(3a - 7b + 3)(3a - 7b + 5)
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).