Advertisements
Advertisements
प्रश्न
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
उत्तर
In the given problem, we have to find the value of `(a^2 - ab+ b^2),(a^2 + ab +b^2)`
Given `a+b = 10 , ab = 16`
We shall use the identity \[\left( a + b \right)^3 = a^3 + b^3 + 3ab(a + b)\]
We can rearrange the identity as
`a^3 + b^3 = (a+b)^3 - 3ab (a+b)`
`a^3 +b^3 = (10)^3 - 3 xx 16 (10)`
`a^3 + b^3= 1000 - 480`
`a^3 + b^3 = 520`
Now substituting values in `a^3 + b^3 = (a+b) (a^2 + b^2 - ab)`as, `a^3 +b^3 = 520,a+b = 10`
`a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
`520 = 10 (a^2 + b^2 - ab)`
`520/10 = (a^2 +b^2 - ab)`
`52 = (a^2 + b^2 -ab)`
We can write `a^2 +b^2 + ab ` as `a^2 + b^2 +ab -2ab +2ab`
Now rearrange `a^2+b^2+ab - 2ab +2ab` as
`= a^2 + 2ab +b^2 -2ab +ab`
`=(a+b)^2 - ab`
Thus `a^2 +b^2 +ab =(a+b)^2 -ab`
Now substituting values `a+b = 10,10 ab = 16`
`a^2 +b^2 + ab = (10)^2 - 16`
`a^2 + b^2 +ab = 100 -16`
`a^2 + a^2 + ab = 84`
Hence the value of `(a^2 - ab +b^2),(a^2 + ab+b^2)`is `52,84` respectively.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(102)3
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Simplify the following:
0.76 x 0.76 - 2 x 0.76 x 0.24 x 0.24 + 0.24
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
`(a + 2b + c)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
(598)3
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Find the square of : 3a + 7b
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
(xy+4) (xy−4)
Evaluate: 20.8 × 19.2
Evaluate the following without multiplying:
(1005)2
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Simplify:
(2x - 4y + 7)(2x + 4y + 7)