Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
उत्तर
The given expression is (1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
We shall use the identity `(a + b)(a - b) = a^2 - b^2`
Here `a =1.5x^2`
`b = 0.3y^2`
By applying identity we get
`(1.5x^2 xx 1.5x^2) - (1.5x^2 + 0.3y^2) = (1.5x^2)^2 - (0.3y^2)^2`
`= (1.5x^2 xx 1.5x^2) - (0.3y^2 xx 0.3y^2)`
`= 2.25x^2 - 0.09y^4`
Hence the vlue of `(1.5x^2 - 0.3y^2)(1.5x^2 + 0.3y^2) " is " 2.25x^4 - 0.09y^4`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Factorise the following:
`27p^3-1/216-9/2p^2+1/4p`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Evaluate the following:
(98)3
Find the following product:
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Expand the following:
(a + 3b)2
Evaluate the following without multiplying:
(999)2
If p + q = 8 and p - q = 4, find:
p2 + q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz