Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given\[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] as
\[\left( \frac{3}{x} - 2 x^2 \right)\left( \left( \frac{3}{x} \right)^2 + \left( 2 x^2 \right)^2 - \left( \frac{3}{x} \right)\left( 2 x^2 \right) \right)\]
\[ = \left( \frac{3}{x} \right)^3 - \left( 2 x^2 \right)^3 \]
\[ = \left( \frac{3}{x} \right)\left( \frac{3}{x} \right)\left( \frac{3}{x} \right) - \left( 2 x^2 \right)\left( 2 x^2 \right)\left( 2 x^2 \right)\]
\[ = \frac{27}{x^3} - 8 x^6\]
Hence the Product value of \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] is `27/x^3 - 8x^6`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
If `x + 1/x = sqrt5`, find the value of `x^2 + 1/x^2` and `x^4 + 1/x^4`
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
(9.9)3
If x = −2 and y = 1, by using an identity find the value of the following
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If a − b = −8 and ab = −12, then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
The value of 2492 – 2482 is ______.
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4